Role of an ATP-sensitive potassium channel opener, YM934, in mitochondrial energy production in ischemic/reperfused heart.
نویسندگان
چکیده
We examined a possible mechanism of action of an ATP-sensitive potassium (K(ATP)) channel opener, YM934, for the improvement of energy metabolism in hearts subjected to 35-min ischemia and 60-min reperfusion. The treatment with 30 nM YM934 for the final 15 min of preischemia enhanced postischemic recovery of left ventricular developed pressure, attenuated the postischemic rise in left ventricular end-diastolic pressure, and suppressed the release of creatine kinase and ATP metabolites during reperfusion. The treatment also restored myocardial ATP and creatine phosphate contents and attenuated the decrease in mitochondrial oxygen consumption rate during reperfusion. The higher mitochondrial function was also seen in YM934-treated hearts at the end of ischemia. In another set of experiments, myocardial skinned bundles were incubated for 30 min under hypoxic conditions in the presence and absence of YM934, and then mitochondrial oxygen consumption rate was determined. Hypoxia decreased the mitochondrial oxygen consumption rate of skinned bundles to approximately 40% of the prehypoxic value. In contrast, the treatment of skinned bundles with 30 nM YM934 preserved the mitochondrial oxygen consumption rate during hypoxia. The effect of YM934 on the hypoxic skinned bundles was abolished by combined treatment with either the K(ATP) channel blocker glyburide or the mitochondrial K(ATP) channel blocker 5-hydroxydecanoate in a concentration-dependent manner. The results suggest that YM934 is capable of attenuating ischemia/reperfusion injury of isolated perfused hearts due to preservation of mitochondrial function during ischemia, probably through opening of mitochondrial K(ATP) channels.
منابع مشابه
Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection.
Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion ...
متن کاملThe effects of ATP-dependent potassium channel opener; pinacidil, and blocker; glibenclamide, on the ischemia induced arrhythmia in partial and complete ligation of coronary artery in rats
Objective(s): Electrical inhomogeneity between ischemic and non ischemic myocardium is the basis of arrhythmia which occurs following coronary artery occlusion. The leakage of potassium from the ischemic region to the non ischemic region is very effective in the generation of these arrhythmias. The aim of this study is to research the effect of ATP-dependent potassium (KATP) channel blocker (gl...
متن کاملRole of mitochondrial and sarcolemmal K(ATP) channels in ischemic preconditioning of the canine heart.
We tested whether mitochondrial or sarcolemmal ATP-sensitive K(+) (K(ATP)) channels play a key role in ischemic preconditioning (IP) in canine hearts. In open-chest beagle dogs, the left anterior descending artery was occluded four times for 5 min each with 5-min intervals of reperfusion (IP), occluded for 90 min, and reperfused for 6 h. IP as well as cromakalim and nicorandil (nonspecific K(AT...
متن کاملPreconditioning by mitochondrial ATP-sensitive potassium channel openers: An effective approach for improving the preservation of heart transplants.
BACKGROUND Recent studies have implicated mitochondrial ATP-sensitive potassium (K(ATP)) channels in the cardioprotective effects of ischemic preconditioning. The present study used a model of prolonged cold heart storage to assess whether the mitochondrial K(ATP) opener diazoxide could reproduce the protection conferred by ischemic preconditioning. METHODS AND RESULTS Fifty-four isolated rat...
متن کاملPharmacologic profile of the selective mitochondrial-K(ATP) opener BMS-191095 for treatment of acute myocardial ischemia.
ATP-sensitive potassium channel (K(ATP)) openers as a class protect ischemic myocardium. The protective effects are independent of vasodilator activity and effects on action potential shortening, actions typically associated with sarcolemmal K(ATP) activation. BMS-191095 is a novel mitochondrial K(ATP) opener which protects ischemic myocardium while having no electrophysiologic or vasodilator e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 291 2 شماره
صفحات -
تاریخ انتشار 1999